发奋范文网 >心得体会

文都考研学习心得8篇

众所周知心得体会是抒发个人情感的一种记录方式,随着社会的进步我们需要用到心得的机会也是日益增多了,以下是发奋范文网小编精心为您推荐的文都考研学习心得8篇,供大家参考。

文都考研学习心得8篇

文都考研学习心得篇1

考研数学复习失分的原因

填空题失分点

(1)考查点:填空题比较多的是考查基本运算和基本概念,或者说填空题比较多的是计算。

(2)失分原因:运算的准确率比较差,这种填空题出的计算题题本身不难,同学们出错的原因主要是不够细心。

(3)对策:这就要求同学们复习的时候些基本的运算题不能只看不算。同学们平时对一些基本的运算题也要认真解答,要在每一种类型的计算题里面拿出一定量进行练习。

选择题失分点

(1)考查点:

选择题一共有八道题,这部分丢分的原因跟填空题出错原因有差异,选择题考的重点跟填空题不一样,填空题主要考基本运算概念,而选择题很少考计算题,它主要考察基本的'概念和理论,主要是容易混淆的概念和理论。

(2)失分原因:

首先,有些题目确实具有一定的难度。其次,有些同学在复习过程中将重点放在了计算题上,而忽视了基础知识,导致基础知识不扎实。最后,缺乏一定的方法和技巧。由于对这种方法不了解,用常规的方法做,使简单的题变成了复杂的题。

(3)对策:

第一,基本理论和基本概念是薄弱环节的同学,就必须在这下功夫,复习一个定理一个性质的时候,即要注意它的内涵又要注意相应的外延。平时在复习的时候要注意基本的概念和理论。

第二,客观题有一些方法和技巧,通常做客观题用直接法,这是用得比较多的,但是也有一些选择题用排除法更为简单,考研的卷子里边有很多题用排除法一眼就可以看出结果,所以要注意这些技巧。

计算题失分点

(1)考查点:

计算题在整份试卷中占绝大部分,还有一部分是证明题,计算题就是要解决计算的准确率的问题。

(2)失分原因:

运算的准确率比较差。

(3)对策:

首先,多做练习是关键。基本的运算必须要练熟,数学跟复习政治英语不一样,数学不是完全靠背,要理解以后通过一定的练习掌握方法,并且一定自己要实践。其次,还有一类题就是证明题,如果出了证明题一般来说这部分就是难点。证明题里面有几个难点的地方是经常考察的地方,同学们复习的时候要注意知识难点的规律和使用方法。

建议大家从复习初期就开始为自己准备两个笔记本,一本用于专门整理自己在复习当中遇到过的不懂的知识点,并且将一些容易出错、容易发生混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,这样,一定会留下非常深刻的印象,避免遗忘出错。

另一本用来整理错题,同学们在复习全程中会遇到许多许多不同类型的题目,对自己曾经不会做的、做错了的题目不要看过标准答案后就轻易放过,应当及时地把它们整理一下,在正确解答过程的后面简单标注一下自己出错的原因、不会做的症结,以后再回头看的时候一定会起到很大的帮助,这也是循序渐进稳步提高解题能力的关键环节。

文都考研学习心得篇2

一、行列式部分,强化概念性质,熟练行列式的求法

在这里我们需要明确下面几条:行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。

二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用

通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调。此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。

三、向量部分,理解相关无关概念,灵活进行判定

向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

四、线性方程组部分,判断解的个数,明确通解的求解思路

线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带入增广矩阵化简整理;不为零则有唯一解直接求出即可。若为非齐次方程组,则按照对增广矩阵的讨论进行求解。

五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵对角化的求解

矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相关题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对称矩阵的问题。

六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定理

二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。另外二次型及其矩阵表示,二次型的秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会用配方法、正交变换化二次型为标准形;掌握二次型正定性的判别方法等等。

文都考研学习心得篇3

一、检查试卷,稳定心情

拿到试卷以后不要着急做题,花一两分钟时间把卷子通篇看一下,检查一下考研数学试卷是不是23道题目,大致都是什么题型的题目。这样做有两个好处:一是可以有效防止因粗心大意而漏掉一些题目,漏题就太可惜了;二是可以加强自己的信心,稳定心情,通过长达一年时间的复习,看了这么多参考书,听了那么多考研课程,相信试卷中肯定有不少题型你是非常熟悉的,看了这些题目以后,你会感到非常高兴,自信心倍增,原本紧张的心情也会放轻松,这样才能正常发挥。

二、按序做题,先易后难

考研数学题量都是23道题目,其中选择题8道,填空题6道,解答题9道。题目类型也是固定的,数学一和数学三1~4题是高数选择题,5~6题是线代选择题,7~8题是概率选择题;9~12题是高数填空题,13题是线代填空题,14题是概率填空题,15~19题是高数解答题,20~21题是线代解答题,22~23题是概率解答题。数学二1~6题是高数选择题,7~8题是线代选择题;9~13是高数填空题,14题是线代填空题,15~21题是高数解答题,22~23题线代解答题。

选择题和填空题主要考察的是基本概念、基本公式、基本定理和基本运算,解答题包括计算题和证明题考察内容比较综合,往往一个题目考查多个知识点,从近些年的试卷特点,题型都比较常见,难度不算大,我们最好按题目顺序做,这样能稳定心情,很快进入状态,也不容易漏做题目,如果遇到自己不熟悉的题目也不要发慌,可以暂时放下接着做下一个题目。等容易的题目有把握的题目都做完之后,再静心研究有疑问的题目,但如果实在没有思路也要学会放弃,留出时间检查自己会做的题目,争取会做的题目不丢分,因为数学的分数最依赖的还是能否将会做的题都做对。

此外,有些同学喜欢先做高数,再做线代,这样的做题顺序也可以,关键是看你平时训练时是如何训练的,选择适合自己的就是最好的,但在此提醒一下大家一定不要漏做题。

三、合理分配答题时间

根据以往考生的经验,一道客观题控制在3分钟左右,最多不要超过5分钟,解答题一般10分钟左右,根据难易程度适当调整。最后至少留出30分钟时间检查,确保会做的题目计算正确。

考研线性代数考点预测:向量的数学定义

首先回顾一下,在中学我们是如何表示向量的。中学数学中主要讨论平面上的向量。平面上的向量是可以平行移动的。两个相互平行且长度相等的向量我们认为是相等的。好,假设在平面直角坐标系中,对于平面上的任何一个向量,我们总是可以将其平移至起点坐标原点重合。这时向量终点的坐标同时也是向量的坐标。这样,我们就可以用一个实数对表示一个平面向量了。

一个实数对实际是我们线性代数中的一个二维行向量。而线代中讨论的向量是任意n维的。所以线性代数中的向量可视为中学向量的推广。

下面是向量的数学定义:

由n个实数a1,a2,…,an构成的有序实数组(a1,a2,…,an)称为一个n维行向量。类似可定义列向量。

问个问题:向量和矩阵是什么关系?向量可视为特殊的矩阵(行数或列数为1的矩阵)。这是理解向量的一个很好的角度。因为学习向量时,我们已把矩阵讨论得很清楚了,所以通过矩阵理解向量就能省不少事。

知道了什么是向量,那什么是向量组呢?向量一般来说不是单独出现,而是成组出现的。我们把多个向量放在一起考虑,就构成了向量组。

当然向量组的严格数学定义也不难理解:由若干个同型向量构成的集合称为一个向量组。这里的“同型”可以理解成矩阵同型,也可以用向量的语言描述成:同为行向量或列向量且维数相同。

文都考研学习心得篇4

在文字叙述题上下功夫

考生一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力。另一方面花点时间准确理解概率论与数理统计中的基本概念。考生在复习过程中可以结合一些实际问题理解概念和公式,也可以通过做一些文字叙述题巩固概念和公式。只要针对每一个基本概念准确的理解,公式理解的准确到位,并且多做些相关题目,再遇到考卷中碰到类似题目时就一定能够轻易读懂和正确解答。

会用公式解题

概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。我在这里推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。比如二向概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛n次,正面朝上的概率是多少呢?这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的解决中。

对概率论与数理统计的考点整体把握

考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。

心理上要重视

考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也为学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做得准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。我一直认为,人的潜力是非常巨大的。这也与“有多少想法,就有多大成就”的说法相合。如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!

在认真熟悉教材上的原理与概念,深刻了解基本概念、基本性质。在同学们以后的复习过程中注意以下几个问题,通过做题来检验自己的复习程度。

概念不清,只会背不会运用;

不能正确地选择概率公式去证明和计算;

不能熟练地应用有关的定义、公式和性质进行综合分析、运算和证明。

分析有误,概率模型搞错。

文都考研学习心得篇5

在写这篇心得体会之前,首先我要感谢湖北经济学院曾经教导过我的老师,没有他们的谆谆教诲,我也许只是一个懵懂的迷茫的找不到出路的本科毕业生,是他们帮助了我。特别地,我要感谢湖北经济学院金融学院方洁院长、肖家杰书记和刘宁副院长在复试阶段为我提供的帮助。同时,我还要感谢我家人、亲戚和朋友的支持与关怀,他们是我前进的动力。其次,我要感谢湖北经济学院金融学院给了我与同学们交流心得体会的机会,在这里,我感到万分地荣幸。因为再过不久,我就要离开母校,离开这个我曾经学习和生活了四年的大学。因此,我真诚地希望自己的一点考研心得体会能够对以后考研同学的备考起到借鉴之用。在这里,我祝愿所有考研的同学马到成功、心想事成!

关于考研备考,由于初试在前,复试在后,初试的成败直接决定有无复试机会及其结果好坏。因此,初试的重要性不言而喻。下面,我就从三个方面谈谈初试。第一个问题是,同学们考不考数学。第二个问题是,若考数学,又如何选择学校。最后一个问题是,若考数学并且确定了学校,又如何备考。实际上,前两个问题,我把它称之为方向性问题,即同学们要结合自身实际情况合理定位;至于第三个问题,我称之为方法性问题,即同学们在合理定位之后要制定具体的备考方案并有效执行。显而易见,方向性问题在前而方法性问题在后,方向性问题处理的好坏直接关系到同学们最后能在多大程度上实现自己的预期目标。因此,方向性问题对于同学们来说很重要,只有瞄准方向并且用力适度,那么弓箭才可能射中靶子。同理,同学们在考研备考时只有选择了合适的学校然后付之于有效的实际行动,那么实现自己的预期目标就不会有太大的悬念。关于方法性问题,其他考研成功的同学对此见解颇多,因此我就不再赘述。我呢,就重点回答前面两个问题,这也是我认为考研最后能否成功中最关键的第一步。

问题一:考不考数学。对于这个问题,我认为同学们应该问自己是否喜欢数学,如果说讨厌,那我建议这类同学不要报考考研要考数学的专业,兴趣是的老师;如果说喜欢但本人基础薄弱,我认为这类同学应该问自己能否有信心通过艰苦的训练从而的的确确把数学水平提高,如果你的回答非常有信心,那我建议你考虑要考数学的专业,毕竟这类专业通常都是热门专业如金融。但是,如果你的回答是可能会提高然而要牺牲其他科目的正常备考用时,那么我建议你选择考研不考数学的专业如法硕和公共管理。最后一类同学就是,他们不但喜欢数学而且其水平和能力也比周围一些或很多同学要强,对于此类同学,在其他条件相同的情况下,只要你们的英语水平能够至少达到国家a区分数线,我建议你选择金融实力很强的大学。

问题二:若考数学,又如何选择学校。我认为对于我们金融学院极少数同学而言,如果你的英语和数学都很好,英语可达到60分以上而数学可以达到120以上,同时专业学得也不错,那么我建议你将自己的目标学校定位如:武汉大学、厦门大学、上海财经大学和中央财经大学等,其中我提醒同学们在选择后三所学校时务必十分谨慎,因为这三所学校的初试竞争是相当地激烈,对于我们金融学院的同学而言,一般初试分数如果达不到380到390之间,是很难杀入复试的。如果你们的英语一般(在这里指很可能只达到国家线55左右),而数学很好或好(在这里指120左右),我建议同学们将自己的目标学校定位如:中南财经政法大学、西南财经大学和东北财经大学等,这类学校不但在复试分数线相对前几所大学要低,而且复试淘汰率也相对较低。但是,它们的金融专业实力在全国很强,我个人感觉我们金融学院考研同学中相当部分同学选择这几所学校才属正常。特别地,我要提出华中科技大学可以作为我们金融学院那些想报考如武汉大学、厦门大学等但信心不够足,同时又不想报考中南财经政法大学的同学优先考虑的大学。最后,如果你的英语和数学都一般,基本上都只能达到国家线或以上一点点,专业还不错,那么我建议你将自己的目标学校定位如:天津财大、南京财大和江西财大等,其实几所大学金融专业实力也不错,对于那些只想获得硕士文凭后就参加工作并且基础不太好的同学而言,我认为这几所大学可以作为他们的选择。

最后,我送金融学院所有考研同学几句话:宝剑锋从磨砺出,梅花香自苦寒来,今天的付出,明天的收获。

文都考研学习心得篇6

1.知识方面

十二月,最后的冲刺阶段,我们需要对知识进行宏观、整体上的把握,但是何为宏观上的把握,下面呢,我将通过一个例子来说明我们应该如何对知识有宏观上的把握。首先呢,我想问大家一个问题,考研数学的题型有哪几种?相信很多同学会告诉我,我问的这句话实在是太多余了,因为看过真题的人都知道,考试题型就是选择题、填空题和解答题。其实,大家告诉我的是考研数学的形式,而考研数学是最不注重形式的一门考试,比如说求极限,它可以出现在选择题、填空题中,也可以出现在解答题中,但是无论它以何种形式出现,我们都是一步步的进行求解,因此我们的考研数学是最不注重形式的一门考试。

考研数学考试主要以计算题为主,下面我们再来看下三种题型,分别对我们考生有什么样的要求:

(1)概念:概念题对大家有两个要求,一是概念的再现,比如说导数,说到导数,大家的头脑中就要不假思索的闪现出如下等式:

二是理解概念本身、理解概念的变形,依旧以导数为例,我们还要知道下列形式也是导数的定义;

(2)计算:计算题要求大家的做题速度要够快、准确率要够高,对于这个目标,我们没有什么捷径而言,唯有通过大量的习题训练才能够做得快、做的准;

(3)证明:证明题是一直以来大家认为最难的一个部分,但是对于这最难的部分,我们并不是素手无策的,因为该部分的内容是有迹可循的,通过我们对近三十年考研数学的真题进行分析,我们发现证明题的分值是比较稳定的,题目数在1-2道,并且考查的内容也是可以被追溯的,就拿高等数学来说吧,它出证明题的范围只有两个一是不等式的证明,一是中值定理。

2.模考

(1)形式与内容

在最后的冲刺阶段,我们一定要注意模拟考试的形式是远远大于考试的内容的,大家都知道考研数学是上午的8:30-11:30,因此我们在模拟的时候,大家也要保证我们在这个时间段答题,一定要按照严格的时间来进行模拟考试。另外大家要注意,我们在模拟的时候,大家做题做到11点15分的时候就结束,我们要留出15分钟的机动时间,因为在正式考试的时候可能会出现一些我们当前无法预知的问题,所以在模拟的时候要留出部分时间。

(2)心态

到了这个紧张的关键时刻,大家在做模拟题目的时候可能会遇到一些障碍,这些障碍可能直接影响大家当前的学习心情,削减备战精力,这种做法是非常不正确的,大家都知道真题的价值是远远高于模拟题目的,但是模拟题目的难度是高于真题的,所以大家遇到障碍的时候,无需久久挂心,烦恼的时候,莫不如将时间花费在查缺补漏上,所以大家这个阶段不要有消极的心态,大家一定要保证积极良好的状态,全面备战考试。

(3)题目

这个阶段我们仍然按照11月下旬的做题节奏,保证真题和模拟题的比例是2:1,平均两天一套题,认真的对待模拟考试。

文都考研学习心得篇7

高数定理证明之微分中值定理:

这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。

费马引理的条件有两个:1。f'(x0)存在2。f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x)—f(x0)0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢极限的保号性是个桥梁。

费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。

该定理的证明不好理解,需认真体会:条件怎么用如何和结论建立联系当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。

闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。大方向对,但过程没这么简单。起码要说清一点:费马引理的条件是否满足,为什么满足

前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢不难想到最值定理。

那么最值和极值是什么关系这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。

拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。

以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。

高数定理证明之求导公式:

xx真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在xx年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给xx考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。

当然,该公式的证明并不难。先考虑f(x)x(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)x(x)在任意点的导数公式。

高数定理证明之积分中值定理:

该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。

若我们选择了用连续相关定理去证,那么到底选择哪个定理呢这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。

若顺利选中了介值定理,那么往下如何推理呢我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数a。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的a。

接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1。函数在闭区间连续,2。实数a位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即a为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。

高数定理证明之微积分基本定理:

该部分包括两个定理:变限积分求导定理和牛顿—莱布尼茨公式。

变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。

“牛顿—莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿—莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。

该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是f(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。

注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以f(x)等于f(x)的变上限积分函数加某个常数c。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。

文都考研学习心得篇8

▶1.元素分析法

?例】求7人站一队,甲必须站在当中的不同站法。

?解析】要求甲必须站在当中,因此只需对其它6人全排列即可,不同的站法共有几种。

▶2.位置分析法

?例】求7人站一队,甲、乙都不能站在两端的不同站法。

?解析】先站在两端的位置有几种站法,再站其它位置有几种站法,因此所有不同的站法共有几种站法。

▶3.间接法

?例】求7人站一队,甲、乙不都站两端的不同站法。

?解析】考虑对立事件为甲乙都站在两端,共有几种站法;7人站成一队所有的站法共几种,所以甲乙不都站两端的不同站法共几种。

▶4.捆绑法

?例】求7人站一队,甲、乙、丙三人都相邻的不同站法。

?解析】先将甲、乙、丙看成一个人,即相当于5个人站成一队,有几种站法,再对这三个人全排列即得所有的不同站法共几种。

▶5.插空法

?例】求7人站一队,甲、乙两人不相邻的不同站法。

?解析】先将其它五人全排列,然后将甲、乙两人插入所产生的6个空中即可,共几种不同的站法。

▶6.留出空位法

?例】求7人站一队,甲在乙前,乙在丙前的不同站法。

?解析】由于甲、乙、丙三人的顺序一定,因此只要其余4人站好,这7个人就站好了,不同的站法共有几种。

▶7.单排法

?例】求9个人站三队,每排3人的不同站法。

?解析】由于对人和对位置都无任何的要求,因此,相当于9个人站成一排,不同的站法显然共有几种。

数学是考研最重要的学科,而且这一科目需要掌握的内容多,考核的方向也相对固定,因此各位20__考研的同学们应该多下功夫。

会计实习心得体会最新模板相关文章:

观云课学习心得8篇

2023年复学学习心得8篇

2022年度学习心得8篇

省培学习心得参考8篇

学习方法学习心得8篇

学习说课规范学习心得8篇

名教师学习心得优质8篇

戴红领巾学习心得8篇

青春担当学习心得8篇

最感动的学习心得8篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    7534

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。